The polysemy advantage in lexical access: The role of context availability and orthographic neighborhood variables

Caitlin Rice, Natasha Tokowicz, Scott H. Fraundorf, & Teljer L. Liburd

Departments of Psychology and Linguistics; Learning Research and Development Center; Center for the Neural Basis of Cognition, University of Pittsburgh

Is the ambiguity advantage in lexical decision limited to polysemous words?

We examined polysemous English words and asked how number of senses (NOS) interacts with: Context availability, Word frequency, and Orthographic neighborhood features

Previous research has demonstrated:
- Lexical decision advantage for polysemous words (Rodd, Gazeti, and Marslen-Wilson, 2002) and words high in context availability (CA) (Tokowicz & Kroll, 2007)
- NOS and CA interact: polysemy advantage only for low context availability words (Tokowicz & Kroll, 2007), and for abstract but not concrete nouns (Jager & Cleland, 2014)
- NOS and word frequency interact: low frequency unambiguous words slowest to be recognized (Pexman et al., 2004)
- Concreteness advantage for words with higher frequency orthographic neighbors (Samson & Pillon, 2004)

Extends previous research by:
- Examining relationship of concreteness and CA
- Examining relationship of word frequency and NOS
- Controlling for orthographic neighborhood features

Predictions
- Interaction of CA and NOS: low CA/ high NOS recognized most quickly
- Interaction of word frequency and NOS: low frequency/low NOS slowest

Method

Stimuli
497 words from WordNet (Miller, 1995) Used to select for one meaning, but varying NOS (range: 1 to 35)
- 451 words for analysis

497 pseudowords, matched to words on word length, bigram frequency, and number of orthographic neighbors (Balota et al. 2007)

Participants
- Final set of 82 monolingual English speakers
- Recruited from University of Pittsburgh Psychology Subject Pool
- 18 years old or older, right-handed, normal vision

Procedure
- Visual lexical decision task
- Collected response time (RT)
- Language History Questionnaire (Tokowicz, Michael, & Kroll, 2004)

Analyses
- Linear mixed effects modeling used to examine both subject and item variance
- Critical t > 2.0 for significance (Baayen, 2008)
- Analyses used R lme4 package (Bates et al., 2014)

Model specifications (bold indicates theoretical interest; MEs of critical interactions included):
Model 1: \(\log(\text{RT}) = \text{wordRT} + \text{pretrialRT} + \text{pretrialACC} + \text{orthofreq} + \text{concreteness} + \text{orthordens} \times \text{concreteness} + \text{orthofreq} \times \text{CA} + \text{orthordens} \times \text{CA} + \text{NOS} \times \text{Concreteness} + \text{NOS} \times \text{CA} + \text{NOS} \times \text{wordfreq} + \text{Wordfreq} \times \text{concreteness} + \text{Wordfreq} \times \text{CA} + \text{CA} \times \text{Subject} + \text{Subject} \times \text{Item} \)

Results

Figure 1. Estimated effect of fixed effects of theoretical interest on lexical decision latency (ms). Bars represent 95% CI; * = significant t > 2.0.

Figure 2. Estimated lexical decision latencies for words high or low in NOS and frequency. Generated from regression equation, where low = 1 SD and high = +1 SD

Discussion
- Evidence for polysemy advantage
- But, polysemy effects qualified by an interaction with word frequency
- No effect of ambiguity for high frequency words
- Processing disadvantage for low NOS/low frequency words
- Similar to Pexman et al. (2004)
- Semantic feedback hypothesis: low frequency words take longer to identify, perhaps during this time information about meaning becomes active. Words with high NOS have greater activation/feedback. Low frequency/low NOS words don’t have as much activation/feedback, and take longer to be recognized

- We hypothesized an interaction of CA and NOS
- Found significant main effects for CA, concreteness, and NOS
- No interaction, contrary to hypotheses and previous research
- Additional control variables and significant interaction of CA × word frequency accounted for variance that past studies reporting CA × NOS interaction did not examine
- Context availability advantage persists, even when orthographic neighborhood variables controlled

Acknowledgements
We thank Blair Armstrong for helpful suggestions, and Chad R. Tokowicz and the PLUM Lab research assistants for data collection and coding.

Table 1. Stimulus properties

<table>
<thead>
<tr>
<th></th>
<th>Words</th>
<th>Pseudowords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Length (number of letters)</td>
<td>5.87</td>
<td>1.68</td>
</tr>
<tr>
<td>Number of senses (NOS)</td>
<td>5.26</td>
<td>3.91</td>
</tr>
<tr>
<td>Orthographic neighborhood frequency</td>
<td>0.68</td>
<td>1.36</td>
</tr>
<tr>
<td>Orthographic neighborhood density</td>
<td>3.09</td>
<td>4.18</td>
</tr>
<tr>
<td>Summed bigram frequency</td>
<td>1.62</td>
<td>0.89</td>
</tr>
<tr>
<td>Concreteness</td>
<td>4.55</td>
<td>1.76</td>
</tr>
<tr>
<td>Context availability</td>
<td>5.84</td>
<td>0.61</td>
</tr>
<tr>
<td>Zipf word frequency</td>
<td>3.55</td>
<td>0.39</td>
</tr>
</tbody>
</table>

1 From WordNet (Miller, 1995) 2 From etalon database (Balota et al., 2007) 3 Zipf log transformation of SubtLex-US occurrence per million, ranges from 1 (low) to 7 (high), and accounts for very low frequency and unobserved words (van Heuven et al., 2015).

References