Course Business

- Two new datasets for class today:
 - CourseWeb: Course Documents → Sample Data → Week 4

- Another relevant package: apaTables

- Next two weeks: Random effects for different types of designs
 - This week: “Nested” random effects
 - Next week: “Crossed” random effects
Course Business

- How are degrees of freedom estimated?

approximately follows a χ^2 distribution. Then they used Satterthwaite’s method-of-moments approximation to the degrees of freedom:

$$df = \frac{2(l^\top C l)^2}{[\text{VAR}(l^\top C l)]}.$$

Taking $f(\theta) = l^\top C(\theta) l$, $\text{VAR}(f(\theta))$ can be approximated by the applying univariate delta method as:

$$\text{VAR}(f(\theta)) \approx [\nabla f(\theta) \hat{\theta}]^\top A [\nabla f(\theta) \hat{\theta}],$$

where $\nabla f(\theta) \hat{\theta}$ is a vector of partial derivatives of $f(\theta)$ with respect to θ evaluated at $\hat{\theta}$. A is the variance-covariance matrix of the $\hat{\theta}$ vector, which can be determined using the second derivatives of the log-likelihood function. Matrix A is not directly extractable from the package. In the \texttt{lmerTest} package we specify the deviance function with respect to the θ parameters and determine the second derivatives at the optimum $\hat{\theta}$. Similarly we specify a function that calculates the variance-covariance matrix with respect to the θ parameters. Then we calculate partial derivatives evaluated at the optimum.

Kuznetsova, Brockhoff, & Christensen, 2017
Distributed Practice!

What (if any) is the difference between each pair of models?

- \(\text{Ime}\left(\text{QualityOfLife} \sim 1 + \text{StutteringFrequency} + \text{StutteringSeverity} + (1|\text{Subject}) + (1|\text{Item}), \text{data=stuttering}\right) \)
- \(\text{Ime}\left(\text{QualityOfLife} \sim 1 + \text{StutteringFrequency} \times \text{StutteringSeverity} + (1|\text{Subject}) + (1|\text{Item}), \text{data=stuttering}\right) \)

- \(\text{Ime}\left(\text{WorkingMemory} \sim 1 + \text{Age} \times \text{PhysicalActivity} + (1|\text{Subject}), \text{data=cog.aging}\right) \)
- \(\text{Ime}\left(\text{WorkingMemory} \sim 1 + \text{Age} + \text{PhysicalActivity} + \text{Age:PhysicalActivity} + (1|\text{Subject}), \text{data=cog.aging}\right) \)
Distributed Practice!

• What (if any) is the difference between each pair of models?
 • `lmer(QualityOfLife ~ 1 + StutteringFrequency + StutteringSeverity + (1|Subject) + (1|Item), data=stuttering)`
 • `lmer(QualityOfLife ~ 1 + StutteringFrequency * StutteringSeverity + (1|Subject) + (1|Item), data=stuttering)`
 • The second model incorporates an interaction between stuttering severity and quality of life (in addition to the main effects)
 • The combination of frequent & severe stuttering has a special effect on quality of life above & beyond either alone
 • `lmer(WorkingMemory ~ 1 + Age * PhysicalActivity + (1|Subject), data=cog.aging)`
 • `lmer(WorkingMemory ~ 1 + Age + PhysicalActivity + Age:PhysicalActivity + (1|Subject), data=cog.aging)`
 • NONE. These are just 2 different ways of writing the same model!
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Dataset

- Social support & health (e.g., Cohen & Wills, 1985)

- lifeexpectancy.csv:
 - Longitudinal study of 1000 subjects – some siblings from same family, so 517 total families
 - Perceived social support (z-scored)
 - Lifespan
 - And several control variables
Model Comparison

- Last week, we saw you could fit several different models from the same dataset
 - `model1 <- lmer(RT ~ 1 + PrevTrials + FontSize + (1|Subject) + (1|Item), data=Stroop)`
 - `model2 <- lmer(RT ~ 1 + PrevTrials + FontSize + PrevTrials:FontSize + (1|Subject) + (1|Item), data=Stroop)`

- Or:
 - `my.model <- lmer(Lifespan ~ 1 + SocSupport + YrsEducation + (1|Family), data=lifeexpectancy)`
 - `your.model <- lmer(Lifespan ~ 1 + HrsExercise + Conscientiousness + (1|Family), data=lifeexpectancy)`
Model Comparison

• One reason to save the results from each model is so that we can compare models:
 • Which model makes better predictions?
 • Compare which theoretical model better accounts for the data:
 - Theoretical Model #1: Social support does affect health
 - Theoretical Model #2: Social support does not affect health
Nested Models

- Three possible models of life expectancy:
 - Amount of weekly exercise
 - Amount of weekly exercise & perceived social support
 - Amount of weekly exercise, perceived social support, years of education, conscientiousness, yearly income, and number of vowels in your last name

- These are **nested** models—each one can be formed by subtracting variables from the one below it (“nested inside it”)
Nested Models

- Three possible models of life expectancy:
 - Amount of weekly exercise
 - Amount of weekly exercise & perceived social support
 - Amount of weekly exercise, perceived social support, years of education, conscientiousness, yearly income, and number of vowels in your last name

Which set of information would give us the most accurate fitted() values?
Nested Models

Three possible models of life expectancy:
1. Amount of weekly exercise
2. Amount of weekly exercise & perceived social support
3. Amount of weekly exercise, perceived social support, years of education, conscientiousness, yearly income, and number of vowels in your last name

The “biggest” nested model will always provide predictions that are at least as good
- Adding info can only explain *more* of the variance
Nested Models

The "biggest" nested model will always provide predictions that are at least as good.

- Adding info can only explain *more* of the variance.
- Might not be *much* better ("number of vowels" effect zero or close to zero) but can’t be worse.

Slope of regression line relating last name vowels to life expectancy is near 0, but that merely fails to improve predictions; doesn’t hurt them.

<table>
<thead>
<tr>
<th>Fixed effects:</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>54.68166</td>
<td>1.62613</td>
<td>33.63</td>
</tr>
<tr>
<td>HrsExercise</td>
<td>1.33084</td>
<td>0.11946</td>
<td>11.14</td>
</tr>
<tr>
<td>SocSupport</td>
<td>0.73018</td>
<td>0.24536</td>
<td>2.98</td>
</tr>
<tr>
<td>YrsEducation</td>
<td>0.56543</td>
<td>0.06385</td>
<td>8.86</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>0.06708</td>
<td>0.23603</td>
<td>0.28</td>
</tr>
<tr>
<td>IncomeThousands</td>
<td>0.25837</td>
<td>0.02465</td>
<td>10.48</td>
</tr>
<tr>
<td>LastNameVowels</td>
<td>-0.06519</td>
<td>0.13437</td>
<td>-0.49</td>
</tr>
</tbody>
</table>
Likelihood Ratio Test

- We can compare **nested** models (only) using the **likelihood-ratio test**
 - Remember that **likelihood** is what we search for in fitting an individual model (find the values with the highest likelihood)

- Likelihood is like the reverse of probability. Probability is about a **result** given a **model**. Likelihood is about a **model** given the **results**.
 - “Given a fair coin, what’s the **probability** of heads?” vs. “I got heads 83 out of 100 times. How **likely** is this to be a fair coin?”
Likelihood Ratio Test

- We can compare **nested** models (only) using the **likelihood-ratio test**

- First, fit each of the models to be compared:
 - Try fitting a **model1** that includes both **HrsExercise** and **SocSupport** (with Family as a random effect)
 - Then, a **model2** that omits **SocSupport**
Likelihood Ratio Test

• Then, compare them with `anova()`:
 • `anova(model1, model2)`
 • Order doesn’t matter

Differences in log likelihoods are distributed as a chi-square
• d.f. = number of variables we added or removed
• Here, $\chi^2_{(1)} = 8.67$, $p < .01$

Log likelihood will also be somewhat higher (better) for the complex model ... but is it SIGNIFICANTLY better?

We'll discuss what this means in a moment (don't worry; it's what we want)
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Hypothesis Testing

Let’s think about our two models:

\[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{HrsExercise} + \gamma_{200} \text{SocSupport} \]

\[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{HrsExercise} \]

What are some possible values of \(\gamma_{200} \) (the SocSupport effect) in model 1?

- 3.83
- -1.04
- 0 – there is no social support effect
Hypothesis Testing

Let’s think about our two models:

\[E(Y_{i(jk)}) = Y_{000} + Y_{100} \text{HrsExercise} + Y_{200} \text{SocSupport} \]

\[E(Y_{i(jk)}) = Y_{000} + Y_{100} \text{HrsExercise} + 0 \text{SocSupport} \]

\[E(Y_{i(jk)}) = Y_{000} + Y_{100} \text{HrsExercise} \]

What happens when \(Y_{200} \) is equal to 0?

- Anything multiplied by 0 is 0, so SocSupport just drops out of the equation.
- Becomes the same thing as model2.
Hypothesis Testing

- Let’s think about our two models:

\[
\text{model1: } E(Y_{i(j)}) = \gamma_{000} + \gamma_{100}\text{HrsExercise} + \gamma_{200}\text{SocSupport} \\
\text{model2: } E(Y_{i(j)}) = \gamma_{000} + \gamma_{100}\text{HrsExercise} \\
\]

- **model2** is just a **special case** of **model1**
 - The version of **model1** where \(\gamma_{200} = 0 \)
 - One of many possible versions of **model1**
 - Why we say **model2** is “nested” in **model1**
Hypothesis Testing

- Let’s think about our two models:

 \[
 E(Y_{i(jk)}) = Y_{000} + Y_{100}\text{HrsExercise} + Y_{200}\text{SocSupport}
 \]

 \[
 E(Y_{i(jk)}) = Y_{000} + Y_{100}\text{HrsExercise} + 0\text{SocSupport}
 \]

- This also helps show why model1 always fits as well as model2 or better
 - model1 can account for the case where \(Y_{200} = 0\)
 - But it can also account for many other cases, too
Hypothesis Testing

- Let’s think about our two models:

 model1 \[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100}HrsExercise + \gamma_{200}\text{SocSupport} \]

 \[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100}HrsExercise + 0\text{SocSupport} \]

 model2 \[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100}HrsExercise \]

- Testing whether model2 fits significantly better is the same thing as testing whether the SocSupport effect significantly differs from 0
 - i.e., whether there is a significant effect of SocSupport
- LR test is another way of doing hypothesis testing!
Hypothesis Testing

Let’s think about our two models:

model1

\[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{HrsExercise} + \gamma_{200} \text{SocSupport} \]

model2

\[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{HrsExercise} \]

“But you’re just comparing two models! You’re not actually testing the effect of social support!”

Closely related to our research goal: Which theoretical model best explains data?

- The theoretical model where social support doesn’t affect life expectancy
- The model where social support does affect life expectancy
Model Comparison & Hypothesis Testing

- Ultimately, t-test and LR test very similar
- **t-test**: Tests whether an effect differs from 0, based on this model
- **Likelihood ratio**: Compare to a model where the effect actually IS constrained to be 0

```
> anova(model1,model2)
refitting model(s) with ML (instead of REML)
Data: lifeexpectancy
Models:
model1: Lifespan ~ 1 + HrsExercise + (1 | Family)
model2: Lifespan ~ 1 + HrsExercise + SocSupport + (1 | Family)
  Df  AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)
model1 4 7058.6 7078.2  -3525.3  7050.6      8.6663 1     0.003241 **
model2 5 7051.9 7076.5  -3521.0  7041.9 ---
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1
```

\[p\text{-value from } \text{lmertest } t\text{-test}: \ .0033 \]
\[p\text{-value from likelihood ratio test}: \ .0032 \]
Model Comparison & Hypothesis Testing

- Ultimately, t-test and LR test very similar
 - **t-test**: Tests whether an effect differs from 0, based on this model
 - **Likelihood ratio**: Compare to a model where the effect actually IS constrained to be 0

- In fact, with an infinitely large sample, these two tests would produce **identical** conclusions
- With small sample, **t-test** is less likely to detect spurious differences (Luke, 2017)
 - But, large differences uncommon
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage

- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
REML vs ML

- Technically, *two* different algorithms that R can use “behind the scenes” to get the estimates
 - **REML: Restricted Maximum Likelihood**
 - Assumes the fixed effects structure is correct
 - *Bad* for comparing models that differ in fixed effects
 - **ML: Maximum Likelihood**
 - *OK* for comparing models
 - But, may underestimate variance of random effects
- Ideal: ML for model comparison, REML for final results
 - *lme4* does this automatically for you!
 - Defaults to REML. But automatically refits models with ML when you do likelihood ratio test.
REML vs ML

- The one time you might have to mess with this:
 - If you are going to be doing a lot of model comparisons, can fit the model with ML to begin with
 - `model1 <- lmer(DV ~ Predictors, data=lifeexpectancy, REML=FALSE)`
 - Saves refitting for each comparison
 - Remember to refit the model with `REML=TRUE` for your final results
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
- Non-Nested Models
- Shrinkage

- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Non-Nested Models

• Which of these pairs are cases of one model nested inside another? Which are not?
 • A
 • Accuracy ~ SentenceType + Aphasia + SentenceType:Aphasia
 • Accuracy ~ SentenceType + Aphasia
 • B
 • MathAchievement ~ SocioeconomicStatus
 • MathAchievement ~ TeacherRating + ClassSize
 • C
 • Recall ~ StudyTime
 • Recall ~ StudyTime + StudyStrategy
Non-Nested Models

• Which of these pairs are cases of one model nested inside another? Which are not?
• A
 • Accuracy ~ SentenceType + Aphasia + SentenceType:Aphasia
 • Accuracy ~ SentenceType + Aphasia

• B
 • MathAchievement ~ SocioeconomicStatus
 • MathAchievement ~ TeacherRating + ClassSize

• Each of these models has something that the other doesn’t have.
Non-Nested Models

• Models that aren’t nested can’t be tested the same way
• Nested model comparison was:

\[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{HrsExercise} + \gamma_{200} \text{SocSupport} \]

\[E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{HrsExercise} + 0 \text{SocSupport} \]

• Null hypothesis (\(H_0 \)) is that there’s no SocSupport effect in the population (population parameter = 0)
 • Could compare the observed SocSupport effect in our sample to the one we expect under \(H_0 \) (0)
Non-Nested Models

- Models that aren’t nested can’t be tested the same way
- A non-nested comparison:

\[
E(Y_{i(jk)}) = \gamma_{000} + 0 \text{YrsEducation} + \gamma_{200} \text{IncomeThousands}
\]
\[
E(Y_{i(jk)}) = \gamma_{000} + \gamma_{100} \text{YrsEducation} + 0 \text{IncomeThousands}
\]

- What would support 1st model over 2nd?
 - \(\gamma_{200}\) is significantly greater than 0, but also \(\gamma_{100} \text{ is 0}\)
 - But remember we can’t test that something \text{is 0} with frequentist statistics … can’t prove the H\(_0\) is true
 - Parametric statistics don’t apply here 😞
Non-Nested Models: Comparison

• Can be compared with information criteria
• Remember our fitted values from last week?
 • `fitted(model2)`
• What if we replaced all of our observations with just the fitted (predicted) values?
 • We’d be losing some information
 • However, if the model predicted the data well, we would not be losing that much
• Information criteria measure how much information is lost with the fitted values (so, lower is better)
Non-Nested Models: Comparison

- **AIC:** An Information Criterion or Akaike’s Information Criterion
 - $-2(\text{log likelihood}) + 2k$
 - $k = \# \text{ of fixed and random effects in a particular model}$
 - A model with a lower AIC is better
 - Doesn’t assume any of the models is correct
 - Appropriate for *correlational / non-experimental* data

- **BIC:** Bayesian Information Criterion
 - $-2(\text{log likelihood}) + \log(n)k$
 - $k = \# \text{ of fixed & random effects, } n = \text{num. observations}$
 - A model with a lower BIC is better
 - Assumes that there’s a “true” underlying model in the set of variables being considered
 - Appropriate for *experimental* data
 - Typically prefers simpler models than AIC

Yang, 2005; Oehlert, 2012
Non-Nested Models

- Can also get these from `anova()`
- Just **ignore** the chi-square if non-nested models

```
> anova(model4, model5)
refitting model(s) with ML (instead of REML)
Data: lifeexpectancy
Models:
  object: Lifespan ~ 1 + IncomeThousands + (1 | Family)
  ..1: Lifespan ~ 1 + YrsEducation + (1 | Family)
               Df  AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)
object   4 7068.7 7088.4 -3530.4   7060.7
..1      4 7090.5 7110.1 -3541.2   7082.5     0 0     1
```

- AIC and BIC do **not** have a significance test associated with them
- The model with the lower AIC/BIC is preferred, but we don’t know how reliable this preference is
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
- Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Shrinkage

• The “Madden curse”…
• Each year, a top NFL football player is picked to appear on the cover of the *Madden NFL* video game
• That player often doesn’t play as well in the following season
• Is the cover ”cursed”?

Fans Want Madden Coverboy Dropped, Fear The Curse
Shrinkage

- The “Madden curse”…
- Each year, a top NFL football player is picked to appear on the cover of the *Madden NFL* video game
- That player often doesn’t play as well in the following year
- Is the cover ”cursed”?
Shrinkage

- What’s needed to be one of the top NFL players in a season?
 - You have to be a good player
 - Genuine predictor (signal)
 - And, luck on your side
 - Random chance or error
 - Top-performing player probably very good and very lucky
- The next season…
 - Your skill may persist
 - Random chance probably won’t
 - Regression to the mean
 - Madden video game cover imperfect predicts next season’s performance because it was partly based on random error
Shrinkage

- Let’s try to predict your final grades in the class

<table>
<thead>
<tr>
<th>Paper 1</th>
<th>Deserved Score</th>
<th>Dartboard of Sampling Error</th>
<th>Resulting Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 6 pages</td>
<td>90</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Models run: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 2</th>
<th>Deserved Score</th>
<th>Dartboard of Sampling Error</th>
<th>Resulting Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 5 pages</td>
<td>90</td>
<td>3</td>
<td>93</td>
</tr>
<tr>
<td>Models run: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 3</th>
<th>Deserved Score</th>
<th>Dartboard of Sampling Error</th>
<th>Resulting Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 3 pages</td>
<td>80</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Models run: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shrinkage

- Page length seems like a good predictor of grades, but partially due to **sampling error**
- All parameter estimates influenced by noise in data

<table>
<thead>
<tr>
<th>Paper 1</th>
<th>DESERVED SCORE</th>
<th>DARTBOARD OF SAMPLING ERROR</th>
<th>RESULTING GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 6 pages</td>
<td>90</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Models run: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 2</th>
<th>DESERVED SCORE</th>
<th>DARTBOARD OF SAMPLING ERROR</th>
<th>RESULTING GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 5 pages</td>
<td>90</td>
<td>3</td>
<td>93</td>
</tr>
<tr>
<td>Models run: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 3</th>
<th>DESERVED SCORE</th>
<th>DARTBOARD OF SAMPLING ERROR</th>
<th>RESULTING GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length: 3 pages</td>
<td>80</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Models run: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shrinkage

• Our estimates (and any choice of variables resulting from this) always partially reflect the idiosyncrasies/noise in the data set we used to obtain them

• Won’t fit any later data set quite as well … shrinkage

• Problem when we’re using the data to decide the model

• In experimental context, design/model usually known in advance
Shrinkage

- Our *estimates* (and any *choice of variables* resulting from this) always partially reflect the idiosyncrasies/noise in the data set we used to obtain them.

- Won’t fit any later data set quite as well … *shrinkage*

- “*If you use a sample to construct a model, or to choose a hypothesis to test, you cannot make a rigorous scientific test of the model or the hypothesis using that same sample data.*”
 (Babyak, 2004, p. 414)
Why is Shrinkage a Problem?

• Relations that we observe between a predictor variable and a dependent variable might simply be capitalizing on random chance

• U.S. government puts out 45,000 economic statistics each year (Silver, 2012)
 • Can we use these to predict whether US economy will go into recession?
 • With 45,000 predictors, we are very likely to find a spurious relation by chance
 • Especially w/ only 11 recessions since the end of WW II
Why is Shrinkage a Problem?

• Relations that we observe between a predictor variable and a dependent variable might simply be capitalizing on random chance

• U.S. government puts out 45,000 economic statistics each year (Silver, 2012)
 • Can we use these to predict whether US economy will go into recession?
 • With 45,000 predictors, we are very likely to find a spurious relation by chance
 • Significance tests try to address this … but with 45,000 predictors, we are likely to find significant effects by chance (5% Type I error rate at $\alpha=.05$)
Shrinkage—Examples

• Adak Island, Alaska
 • Daily temperature here predicts stock market activity!
 • $r = -0.87$ correlation with the price of a specific group of stocks!
 • Completely true—I’m not making this up!

• Problem with this:
 • With thousands of weather stations & stocks, easy to find a strong correlation somewhere, even if it’s just sampling error
 • Problem is that this factoid doesn’t reveal all of the other (non-significant) weather stations & stocks we searched through
 • Would only be impressive if this hypothesis continued to be true on a new set of weather data & stock prices

Vul et al., 2009
Shrinkage—Examples

• “Voodoo correlations” issue in some fMRI analyses (Vul et al., 2009)
 • Find just the voxels (parts of a brain scan) that correlate with some outcome measure (e.g., personality)
 • Then, report the average activation in those voxels with the personality measure
 • Voxels were already chosen on the basis of those high correlations
 • Thus, includes sampling error favoring the correlation but excludes error that doesn’t
 • Real question is whether the chosen voxels would predict personality in a new, independent dataset
Shrinkage—Solutions

- We need to be careful when using the data to select between models.

- The simplest solution: Test if a model obtained from one subset of the data applies to another subset (validation)
 - e.g., training and test sets

- The better solution: Do this with many randomly chosen subsets
 - Monte Carlo methods
 - Reading on CourseWeb for some general ways to do this in R
Shrinkage—Solutions

- Having a **theory** is also valuable
 - Adak Island example is implausible in part because there’s no causal reason why an island in Alaska would relate to stock prices

“Just as you do not need to know exactly how a car engine works in order to drive safely, you do not need to understand all the intricacies of the economy to accurately read those gauges.” – Economic forecasting firm ECRI (quoted in Silver, 2012)
Shrinkage—Solutions

• Having a **theory** is also valuable
 • Adak Island example is implausible in part because there’s no causal reason why an island in Alaska would relate to stock prices

“There is really nothing so practical as a good theory.”
-- Social psychologist Kurt Lewin (Lewin’s Maxim)

• **Not** driven purely by the data or by chance if we have an *a priori* to favor this variable
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Theories of Intelligence

- For each item, rate your agreement on a scale of 0 to 7
Theories of Intelligence

1. “You have a certain amount of intelligence, and you can’t really do much to change it.”

0 7

DEFINITELY DISAGREE

DEFINITELY AGREE
2. “Your intelligence is something about you that you can’t change very much.”

Theories of Intelligence

DEFINITELY AGREE

DEFINITELY DISAGREE

0

7
Theories of Intelligence

3. “You can learn new things, but you can’t really change your basic intelligence.”

0

DEFINITELY DISAGREE

7

DEFINITELY AGREE
Theories of Intelligence

- Subtract your total from 21, then divide by 3
- Learners hold different views of intelligence (Dweck, 2008):

 FIXED MINDSET:
 Intelligence is fixed.
 Performance = ability

 GROWTH MINDSET:
 Intelligence is malleable
 Performance = effort
Theories of Intelligence

- Growth mindset has been linked to greater persistence & success in academic (& other work) (Dweck, 2008)

- Let’s see if this is true for middle-schoolers’ math achievement
 - math.csv on CourseWeb (Sample Data, Week 4)
 - 30 students in each of 24 classrooms ($N = 720$)
 - Measure growth mindset … 0 to 7 questionnaire
 - Dependent measure: Score on an end-of-year standardized math exam (0 to 100)
Theories of Intelligence

- We can start writing a regression line to relate growth mindset to end-of-year score

\[Y_{i(j)} = Y_{100}X_{1i(j)} \]

End-of-year math exam score = Growth mindset
Theories of Intelligence

• What about kids whose Growth Mindset score is 0?
 • Completely Fixed mindset
 • Even these kids probably will score at least some points on the math exam; won’t completely bomb
• Include an intercept term
 • Math score when theory of intelligence score = 0

\[Y_{i(j)} = Y_{000} + Y_{100}X_{1i(j)} \]

End-of-year math exam score Baseline Growth mindset
Theories of Intelligence

- We probably can’t predict each student’s math score exactly
 - Kids differ in ways other than their growth mindset
- Include an **error** term
 - Residual difference between predicted & observed score for observation i in classroom j
 - Captures what’s unique about child i
 - Assume these are independently, identically normally distributed (mean 0)

$$ Y_{i(j)} = Y_{000} + Y_{100}X_{1i(j)} + E_{i(j)} $$

| End-of-year math exam score | Baseline | Growth mindset | Error |
Theories of Intelligence Data

Sampled CLASSROOMS

Sampled STUDENTS

- Math achievement score y_{11}
- Theory of intelligence score x_{111}
- Independent error term e_{11}

- Math achievement score y_{21}
- Theory of intelligence score x_{121}
- Independent error term e_{21}

- Math achievement score y_{42}
- Theory of intelligence score x_{142}
- Independent error term e_{42}

Where is the problem here?
Theories of Intelligence Data

Sampled CLASSROOMS
- Differences in classroom size, teaching style, teacher’s experience…

Sampled STUDENTS
- Students in the same classroom probably have more similar scores. Clustering.

Math achievement score y_{11}
Theory of intelligence score x_{111}
Independent error term e_{11}

Math achievement score y_{21}
Theory of intelligence score x_{121}
Independent error term e_{21}

Math achievement score y_{42}
Theory of intelligence score x_{142}
Independent error term e_{42}

Error terms not fully independent
Clustering

- Why does clustering matter?
- Remember that we test effects by comparing them to their standard error:

\[t = \frac{\text{Estimate}}{\text{Std. error}} \]

But if we have a lot of kids from the same classroom, they share more similarities than all kids in population. *Understating* the standard error across subjects…

…thus *overstating* the significance test.

- Failing to account for clustering can lead us to detect spurious results (sometimes quite badly!)
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models

- Shrinkage

- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Random Effects

- Can’t we just add Classroom as another fixed effect variable?
- \[1 + \text{TOI} + \text{Classroom} \]
- Not what we want for several reasons
- e.g., We’d get many, many comparisons between individual classrooms

| Coefficients | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------|----------|------------|---------|----------|
| (Intercept) | 76.07314 | 1.06108 | 71.694 | < 2e-16 *** |
| TOI | 1.46009 | 0.08983 | 16.254 | < 2e-16 *** |
| ClassroomBrehm | -9.03434 | 1.42491 | -6.340 | 4.13e-10 *** |
| ClassroomCarol | -2.45822 | 1.42241 | -1.728 | 0.084396 . |
| ClassroomChang | -7.06268 | 1.42231 | -4.966 | 8.62e-07 *** |
| ClassroomChavez | -4.53531 | 1.42226 | -3.189 | 0.001493 ** |
| ClassroomCornell | -3.84651 | 1.42352 | -2.702 | 0.007058 ** |
| ClassroomCreighton | -10.31291 | 1.42352 | -7.245 | 1.15e-12 *** |
| ClassroomEnschede | -9.68123 | 1.42237 | -6.806 | 2.16e-11 *** |
| ClassroomFranklin | -1.45993 | 1.42226 | -1.026 | 0.305018 |
| ClassroomFulton | -5.11620 | 1.42317 | -3.595 | 0.000347 *** |
| ClassroomGreen | -5.68466 | 1.42226 | -3.997 | 7.10e-05 *** |
| ClassroomHartmann | -7.97709 | 1.42251 | -5.608 | 2.96e-08 *** |
| ClassroomHouston | -10.17496 | 1.42251 | -7.153 | 2.16e-12 *** |
| ClassroomJackson | -3.47281 | 1.42257 | -2.441 | 0.014886 * |
| ClassroomLam | -6.15548 | 1.42264 | -4.327 | 1.73e-05 *** |
| ClassroomMatsumoto | -2.72472 | 1.42257 | -1.915 | 0.055858 . |
| ClassroomRyskin | -0.03451 | 1.42340 | -0.024 | 0.980664 |
| ClassroomSmith | -5.69015 | 1.42264 | -4.000 | 7.02e-05 *** |
| ClassroomStoddard | -3.10356 | 1.42317 | -2.181 | 0.029537 * |
| ClassroomStuart | -4.29443 | 1.42241 | -3.019 | 0.002628 ** |
| ClassroomTrude | -4.20310 | 1.42257 | -2.955 | 0.003237 ** |
| ClassroomTullis | -3.61104 | 1.42246 | -2.539 | 0.011347 * |
| ClassroomWagner | -8.26124 | 1.42306 | -5.805 | 9.77e-09 *** |
| ClassroomWilliams | -2.07705 | 1.42234 | -1.460 | 0.144657 |
Random Effects

• What makes the Classroom variable different from the TOI variable?
 ➢ Theoretical interest is in effects of theories of intelligence, not in effects of being Ms. Fulton
 ➢ If another researcher wanted to replicate this experiment, they could include the Theories of Intelligence scale, but they probably couldn’t get the same teachers
 ➢ We do expect our results to generalize to other teachers/classrooms, but this experiment doesn’t tell us anything about how the relation would generalize to other questionnaires

• These classrooms are just some classrooms we sampled out of the population of interest
Fixed Effects vs. Random Effects

- **Fixed effects:**
 - We’re interested in the specific categories/levels
 - The categories are a complete set
 - At least within the context of the experiment
- **Random effects:**
 - Not interested in the specific categories
Random Effect or Fixed Effect?

- Scott interested in the effects of distributed practice on grad students’ statistics learning. For his experimental items, he picks 10 statistics formulae randomly out of a textbook. Then, he samples 20 Pittsburgh-area grad students as participants. Half study the items using distributed practice and half study using massed practice (a single day) before they are all tested.
- Participant is a...

- Item is a...

- Practice type (distributed vs. massed) is a …
Random Effect or Fixed Effect?

- Scott interested in the effects of distributed practice on grad students’ statistics learning. For his experimental items, he picks 10 statistics formulae randomly out of a textbook. Then, he samples 20 Pittsburgh-area grad students as participants. Half study the items using distributed practice and half study using massed practice (a single day) before they are all tested.

- **Participant** is a...
 - Random effect. Scott sampled them out of a much larger population of interest (grad students).

- **Item** is a...
 - Random effect. Scott’s not interested in these specific formulae; he picked them out randomly.

- **Practice type** (distributed vs. massed) is a ...
 - Fixed effect. We’re comparing these 2 specific conditions
Random Effect or Fixed Effect?

• A researcher in education is interested in the relation between class size and student evaluations at the university level. The research team collects data at 10 different universities across the US. University is a…

• A planner for the city of Pittsburgh compares the availability of parking at Pitt vs CMU. University is a…
Random Effect or Fixed Effect?

- A researcher in education is interested in the relation between class size and student evaluations at the university level. The research team collects data at 10 different universities across the US. University is a…
 - Random effect. Goal is to generalize to universities as a whole, and we just sampled these 10.
- A planner for the city of Pittsburgh compares the availability of parking at Pitt vs CMU. University is a…
 - Fixed effect. Now, we DO care about these two particular universities.
Random Effect or Fixed Effect?

- We’re studying students learning to speak English as a second language. Our goal is to compare their productions of regular vs. irregular verbs. However, we also need to account for the fact that our participants speak a variety of different first languages, which is a…
Random Effect or Fixed Effect?

- We’re studying students learning to speak English as a second language. Our goal is to compare their productions of regular vs. irregular verbs. However, we also need to account for the fact that our participant speak a variety of different first languages, which is a…

- Random effect. We’re not interested in specific languages, and the languages represented by our sample are probably only a set of all possible first languages.
Random Effect or Fixed Effect?

- We’re testing the effectiveness of a new SSRI on depressive systems. In our clinical trial, we manipulate the dosage of the SSRI that participants receive to be either 0 mg (placebo), 10 mg, or 20 mg per day. **Dosage is a…**
We’re testing the effectiveness of a new SSRI on depressive systems. In our clinical trial, we manipulate the dosage of the SSRI that participants receive to be either 0 mg (placebo), 10 mg, or 20 mg per day. **Dosage** is a…

• Fixed effect. This is the variable that we’re theoretically interested in and want to model. Also, 0, 10, and 20 mg exhaustively characterize dosage within this experimental design.
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage

- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level-2 Variables
 - Multiple Random Effects
 - Limitations & Future Directions
Modeling Random Effects

• Let’s add Classroom as a random effect to the model (then we’ll talk about what it’s doing)

• Can you fill in the rest?
 • `model1 <- lmer(FinalMathScore ~ 1 + TOI + (1|Classroom), data=math)`
Modeling Random Effects

• Let’s add Classroom as a random effect to the model (then we’ll talk about what it’s doing)

• Can you fill in the rest?
 • `model1 <- lmer(FinalMathScore ~ 1 + TOI + (1|Classroom), data=math)`
Modeling Random Effects

• Let’s add Classroom as a random effect to the model (then we’ll talk about what it’s doing)

• Can you fill in the rest?
 • `model1 <- lmer(FinalMathScore ~ 1 + TOI + 1|Classroom), data=math)`

• We’re allowing each classroom to have a different **intercept**
 • Some classrooms have higher math scores on average
 • Some have lower math scores on average
 • A **random intercept**
Modeling Random Effects

- Let’s add Classroom as a random effect to the model (then we’ll talk about what it’s doing)

- Can you fill in the rest?
 - `model1 <- lmer(FinalMathScore ~ 1 + TOI + (1|Classroom), data=math)`

- We are not interested in comparing the specific classrooms we sampled
- Instead, we are model the *variance* of this population
- How much do classrooms typically vary in math achievement?
Modeling Random Effects

- Model results:

<table>
<thead>
<tr>
<th>Random effects:</th>
<th>Variance</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups Name</td>
<td>8.198</td>
<td>2.863</td>
</tr>
<tr>
<td>Classroom (Intercept)</td>
<td>30.343</td>
<td>5.508</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of obs: 720, groups: Classroom, 24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - Variance of classroom intercepts (normal distribution with mean 0)
 - Additional, unexplained subject variance (even after accounting for classroom differences)

 - We are not interested in comparing the specific classrooms we sampled
 - Instead, we are modeling the variance of this population
 - How much do classrooms typically vary in math achievement?
 - Standard deviation across classrooms is 2.86 points
Intraclass Correlation Coefficient

- Model results:

 - The intraclass correlation coefficient measures *how much* variance is attributed to a random effect.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom (Intercept)</td>
<td></td>
<td>8.198</td>
<td>2.863</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>30.343</td>
<td>5.508</td>
</tr>
</tbody>
</table>

 Number of obs: 720, groups: Classroom, 24

 \[
 ICC = \frac{\text{Variance of Random Effect of Interest}}{\text{Sum of All Random Effect Variances}} = \frac{8.198}{8.198 + 30.343}
 \approx 0.21
 \]
Intraclass Correlation Coefficient

- The *intraclass correlation coefficient* measures *how much* variance is attributed to a random effect.
- Proportion of all random variation that has to do with *classrooms*
 - 21% of random student variation due to which classroom they are in.
- Also the *correlation* among observations from the same classroom:
 - High correlation among observations from the same classroom = Classroom matters a lot = high ICC
 - Low correlation among observations from the same classroom = Classroom not that important = low ICC
Caveats

- For a fair **estimate** of the **population variance**:
 - At least 5-6 group, 10+ preferred (e.g., 5+ classrooms) (Bolker, 2018)
 - Population size is at least 100x the number of groups you have (e.g., at least 240 classrooms in the world) (Smith, 2013)
 - But, can (and should) still include the random effect to account for clustering. Just not a good estimate of the population variance

- For a **true “random effect”**, the observed set of categories **samples** from a larger population
 - If we’re not trying to generalize to a population, might instead call this a **variable intercept model** (Smith, 2013)
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
- Notation
- Level-2 Variables
- Multiple Random Effects
- Limitations & Future Directions
What exactly is this model doing?

Let’s go back to our model of individual students (now slightly different):

\[Y_{i(j)} = B_{00j} + Y_{100}x_{1i(j)} + E_{i(j)} \]

- **End-of-year math exam score**
- **Baseline**
- **Growth mindset**
- **Student Error**
Notation

- What exactly is this model doing?

What now determines the baseline that we should expect for students with growth mindset=0?

- Let’s go back to our model of individual students (now slightly different):

\[
Y_{i(j)} = B_{00j} + Y_{100}x_{1i(j)} + E_{i(j)}
\]

- End-of-year math exam score
- Baseline
- Growth mindset
- Student Error
Notation

- What exactly is this model doing?
- Baseline (intercept) for a student in classroom j now depends on two things:

$$B_{00j} = Y_{000} + U_{0j}$$

 - Intercept
 - Overall intercept across everyone
 - Teacher effect for this classroom (Error)

- Let’s go back to our model of individual students (now slightly different):

$$Y_{i(j)} = B_{00j} + Y_{100}x_{1i(j)} + E_{i(j)}$$

 - End-of-year math exam score
 - Baseline
 - Growth mindset
 - Student Error
Notation

- Essentially, we have two regression models
 - Hierarchical linear model
 - Model of classroom \(j\):
 \[
 B_{00j} = Y_{000} + U_{0j}
 \]
 \(B_{00j}\) Intercept
 \(Y_{000}\) Overall intercept across everyone
 \(U_{0j}\) Teacher effect for this classroom (Error)

- Model of student \(i\):
 \[
 Y_{i(j)} = B_{00j} + Y_{100}x_{1i(j)} + E_{i(j)}
 \]
 \(Y_{i(j)}\) End-of-year math exam score
 \(B_{00j}\) Baseline
 \(Y_{100}x_{1i(j)}\) Growth mindset
 \(E_{i(j)}\) Student Error
Hierarchical Linear Model

Level-2 model: Sampled CLASSROOMS

Ms. Fulton’s Class

Mr. Wagner’s Class

Ms. Green’s Class

Ms. Cornell’s Class

Level-1 model: Sampled STUDENTS

Student 1

Student 2

Student 3

Student 4

• Level-2 model is for the superordinate level here, Level-1 model is for the subordinate level
Notation

- Two models seem confusing. But we can simplify with some algebra...
- Model of classroom j:

 \[Y_{000} + U_{0j} \]

 - Intercept B_{00j}
 - Overall intercept across everyone
 - Teacher effect for this classroom (Error)

- Model of student i:

 \[Y_{i(j)} = B_{00j} + Y_{100}X_{1i(j)} + E_{i(j)} \]

 - End-of-year math exam score
 - Baseline
 - Growth mindset
 - Student Error
Notation

- Substitution gives us a single model that combines level-1 and level-2
- Mixed effects model
- Combined model:

\[Y_{i(j)} = Y_{000} + U_{0j} + Y_{100}X_{1i(j)} + E_{i(j)} \]

- End-of-year math exam score
- Overall intercept
- Teacher effect for this classroom (Error)
- Growth mindset
- Student Error
Notation

• Just two slightly different ways of writing the same thing. **Notation** difference, not statistical!
• Mixed effects model:

\[
Y_{i(j)} = Y_{000} + U_{0j} + Y_{100}x_{1i(j)} + E_{i(j)}
\]

• Hierarchical linear model:

\[
B_{00j} = Y_{000} + U_{0j}
\]
\[
Y_{i(j)} = B_{00j} + Y_{100}x_{1i(j)} + E_{i(j)}
\]
Notation

- **lme4** always uses the mixed-effects model notation

\[
Y_{i(j)} = Y_{000} + Y_{100}x_{1i(j)} + U_{0j} + E_{i(j)}
\]

- **lmer**

 \[
 \text{FinalMathScore} \sim 1 + \text{TOI} + (1|\text{Classroom})
 \]

 - (Level-1 error is always implied, don’t have to include)
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
- Level-2 Variables
- Multiple Random Effects
- Limitations & Future Directions
Level-2 Variables

- So far, all our model says about classrooms is that they’re different
 - Some classrooms have a large intercept
 - Some classrooms have a small intercept

- But, we might also have some interesting variables that characterize classrooms
 - They might even be our main research interest!

- How about teacher theories of intelligence?
 - Might affect how they interact with & teach students
Level-2 Variables

LEVEL 2
Sampled CLASSROOMS
TeacherTheory

LEVEL 1
Sampled STUDENTS
TOI

- **TeacherTheory** characterizes Level 2
- *All* students in the same classroom will have the *same* TeacherTheory
- `xtabs(~ TeacherTheory + Classroom, data=math)`

<table>
<thead>
<tr>
<th>Classroom</th>
<th>TeacherTheory</th>
<th>Baker</th>
<th>Brehm</th>
<th>Carol</th>
<th>Chang</th>
<th>Chavez</th>
<th>Cornell</th>
<th>Creighton</th>
<th>Enschede</th>
<th>Franklin</th>
<th>Fulton</th>
<th>Green</th>
<th>Hartmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Level-2 Variables

- This becomes another variable in the level-2 model of *classroom differences*
 - Tells us what we can expect this classroom to be like

\[
B_{00j} = Y_{000} + Y_{200}x_{20j} + U_{0j}
\]

- Intercept
- Overall intercept
- Teacher mindset
- Teacher effect for this classroom (Error)

\[
Y_{i(j)} = B_{00j} + Y_{100}x_{1i(j)} + E_{i(j)}
\]

- End-of-year math exam score
- Baseline
- Growth mindset
- Student Error
Level-2 Variables

- Teacher mindset is a fixed-effect variable
 - We ARE interested in the effects of teacher mindset on student math achievement … a research question, not just something to control for

- Even if we ran this with a new random sample of 30 teachers, we WOULD hope to replicate whatever regression slope for teacher mindset we observe (whereas we wouldn’t get the same 30 teachers back)
Level-2 Variables

- Since R uses mixed effects notation, we don’t have to do anything special to add a level-2 variable to the model

 \[\text{model2} \leftarrow \text{lmer}(\text{FinalMathScore} \sim 1 + \text{TOI} + \text{TeacherTheory} + (1|\text{Classroom}), \text{data=math}) \]

- R automatically figures out TeacherTheory is a level-2 variable because it’s invariant for each classroom
- We keep the random intercept for Classroom because we don’t expect TeacherTheory will explain all of the classroom differences. Intercept captures residual differences.
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level 2 Variables
- Multiple Random Effects
- Limitations & Future Directions
Hold on! Classrooms aren’t fully independent, either. Some of them are from the same school, and some are from different schools.
Multiple Random Effects

LEVEL 3
Sampled SCHOOLS

LEVEL 2
Sampled CLASSROOMS

LEVEL 1
Sampled STUDENTS

- Is SCHOOL a fixed effect or a random effect?
- These schools are just a sample of possible schools of interest -> Random effect.
No problem to have more than 1 random effect in the model! Try adding a random intercept for school.
Multiple Random Effects

- **LEVEL 3**
 - Sampled SCHOOLS

- **LEVEL 2**
 - Sampled CLASSROOMS

- **LEVEL 1**
 - Sampled STUDENTS

- `model3 <- lmer(FinalMathScore ~ 1 + TOI + TeacherTheory + (1|Classroom) + (1|School), data=math)`
This is an example of **nested** random effects. Each classroom is always in the same school.
Multiple Random Effects

LEVELED 3
Sampled SCHOOLS

LEVELED 2
Sampled CLASSROOMS

LEVELED 1
Sampled STUDENTS

• Let’s do an intervention: Hours of use of math tutoring software
• Which level(s) of the model could this be at?
Multiple Random Effects

- Let’s do an intervention: Hours of use of math tutoring software
- Which level(s) of the model could this be at?
Multiple Random Effects

- Let’s do an intervention: Hours of use of math tutoring software
- Which level(s) of the model could this be at?

Carnegie Learning

LEVEL 3
Sampled SCHOOLS

LEVEL 2
Sampled CLASSROOMS
If classrooms within a school vary in tutor use, but consistent within a classroom.

LEVEL 1
Sampled STUDENTS

If classrooms within a school vary in tutor use, but consistent within a classroom.

Carnegie Learning
Multiple Random Effects

LEVEL 3
Sampled SCHOOLS

LEVEL 2
Sampled CLASSROOMS

Carnegie Learning
LEVEL 1
Sampled STUDENTS
If students within a classroom varied in their tutor usage

- Let’s do an intervention: Hours of use of math tutoring software
- Which level(s) of the model could this be at?
Multiple Random Effects

- CAN YOU FIND THIS OUT FROM R?
Multiple Random Effects

• Can you find this out from R?
 • `xtabs(~ TutorHours + Classroom, data=math)`

Sampled STUDENTS

Carnegie Learning

Sampled CLASSROOMS

If classrooms within a school vary in tutor use, but consistent within a classroom.
Try adding `TutorHours` to your model

```
model4 <- lmer(FinalMathScore ~ 1 + TOI + TutorHours + TeacherTheory + (1|Classroom) + (1|School), data=math)
```

Don’t need to specify level; `lmer()` figures it out!

But, important for interpretation
Week 4: Nested Random Effects

- Model Comparison
 - Nested Models
 - Hypothesis Testing
 - REML vs ML
 - Non-Nested Models
 - Shrinkage
- Nested Random Effects
 - Introduction to Clustering
 - Random Effects
 - Modeling Random Effects
 - Notation
 - Level 2 Variables
 - Multiple Random Effects
- Limitations & Future Directions
• #1: Assuming classrooms differ only in *intercept* (overall math score)
 • But *slope* of regression line for tutor use might vary across schools. Used more or less effectively
Limitations & Future Directions

- #2: Random effects here are fully nested
- Each student in 1 classroom, each classroom in 1 school
Limitations & Future Directions

- #2: Random effects here are fully nested.
- But what about something like this?
- Each subject seems more than 1 item, each item presented to more than 1 subject.

Sentences

- Item A
- Item B
Limitations & Future Directions

Subjects

- Subject 1
- Subject 2

Reading Times

- RT 1
- RT 2
- RT 3
- RT 4

Sentences

- Item A
- Item B

- We will address both of these next week 😊