Course Business

- Discuss midterm projects
 - Due today!

- Short-ish lecture on effect size & power
 - sleep.csv on CourseWeb
 - We’ll also be finishing cuedrecall.csv from last week

- Next week = SPRING BREAK, WOO!
 - No class
 - Scheduled office hours will not be held, but I’m available over e-mail or by appointment
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Distributed Practice

- Your colleague Arpad, who studies insomnia, ran a study examining whether (a) hours of exercise the day before and (b) amount of caffeine consumed predicted whether people successfully slept through the night:

\[
\text{InsomniaModel} \leftarrow \text{glmer}(\text{SleptThroughNight} \sim 1 + \text{HoursExercise} + \text{MgCaffeine} + (1|\text{Subject}), \text{data=sleep, family=binomial})
\]

- Arpad would like help interpreting his R output.

- Describe how hours of exercise affected sleeping through the night:

| Fixed effects | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------------|----------|------------|---------|-----------|
| (Intercept) | 2.102561 | 0.485201 | 4.333 | 1.47e-05 | *** |
| HoursExercise | 0.610568 | 0.225743 | 2.705 | 0.00684 | ** |
| MgCaffeine | -0.005148| 0.003270 | -1.575 | 0.11537 |
Distributed Practice

- Your colleague Arpad, who studies insomnia, ran a study examining whether (a) hours of exercise the day before and (b) amount of caffeine consumed predicted whether people successfully slept through the night:

\[
\text{InsomniaModel} \leftarrow \text{glmer}(\text{SleptThroughNight} \sim 1 + \text{HoursExercise} + \text{MgCaffeine} + (1|\text{Subject}), \text{data=sleep, family=binomial})
\]

- Arpad would like help interpreting his R output.

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|-----------|
| (Intercept) | 2.102561 | 0.485201 | 4.333 | 1.47e-05 *** |
| HoursExercise | 0.610568 | 0.225743 | 2.705 | 0.00684 ** |
| MgCaffeine | -0.005148| 0.003270 | -1.575 | 0.11537 |

- Describe how hours of exercise affected sleeping through the night:
 - Every hour of exercise increased the odds of sleeping through the night by \(\exp(0.61) = 1.84 \) times.
Distributed Practice

- Sleep data from one subject wasn’t properly recorded due to experimenter error.
- Since there is no reason to think this subject would be systematically different from the others, let’s just remove those observations entirely. Which would NOT accomplish this?

(a) `sleep$HoursSleep <- ifelse(is.na(sleep$HoursSleep), 0, sleep$HoursSleep)`
(b) `sleep <- subset(sleep, is.na(sleep$HoursSleep) == FALSE)`
(c) `sleep <- sleep[is.na(sleep$HoursSleep) == FALSE,]`
(d) `sleep <- na.omit(sleep)`
Distributed Practice

- Sleep data from one subject wasn’t properly recorded due to experimenter error.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Observation</th>
<th>HoursExercise</th>
<th>MgCaffeine</th>
<th>SleptThroughNight</th>
<th>HoursSleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>S001</td>
<td>6</td>
<td>S001-1</td>
<td>Min. : 0.0000</td>
<td>Min. : 0.00</td>
<td>Min. : 0.0000</td>
</tr>
<tr>
<td>S001</td>
<td>6</td>
<td>S001-2</td>
<td>1st Qu.: 0.0000</td>
<td>1st Qu.: 35.79</td>
<td>1st Qu.: 1.0000</td>
</tr>
<tr>
<td>S001</td>
<td>6</td>
<td>S001-3</td>
<td>Median : 0.5000</td>
<td>Median : 82.12</td>
<td>Median : 1.0000</td>
</tr>
<tr>
<td>S001</td>
<td>6</td>
<td>S001-4</td>
<td>Mean : 0.9015</td>
<td>Mean : 87.47</td>
<td>Mean : 0.8290</td>
</tr>
<tr>
<td>S001</td>
<td>6</td>
<td>S001-5</td>
<td>3rd Qu.: 2.0000</td>
<td>3rd Qu.: 129.20</td>
<td>3rd Qu.: 1.0000</td>
</tr>
<tr>
<td>S001</td>
<td>6</td>
<td>(Other): 238</td>
<td>Max. : 3.0000</td>
<td>Max. : 297.61</td>
<td>Max. : 12.6000</td>
</tr>
</tbody>
</table>

- Since there is no reason to think this subject would be systematically different from the others, let’s just remove those observations entirely. Which would **NOT** accomplish this?

(a) `sleep$HoursSleep <- ifelse(is.na(sleep$HoursSleep), 0, sleep$HoursSleep)`

This would replace the missing values with 0s rather than remove them. That’s not what we want here—failure to record the data doesn’t mean that the person slept 0 hours.
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Let's model our cued recall data with `glmer()`

- 120 **Subjects**, all see the same 36 **WordPairs**
- **AssocStrength** (property of **WordPairs**):
 - Two words have **Low** or **High** relation in meaning
 - VIKING—HELMET = high associative strength
 - VIKING—COLLEGE = low associative strength
- **Study Strategy** (property of **Subjects**):
 - **Maintenance** rehearsal: Repeat it over & over
 - **Elaborative** rehearsal: Relate the two words

Model with maximal random effects structure:

```r
model1 <- glmer(Recalled ~ 1 + AssocStrength * Strategy + (1 + AssocStrength|Subject) + (1 + Strategy|WordPair), data=cuedrecall, family=binomial)
```
Interactions

- Associative strength has a + effect on recall
- Study time has a + effect on recall
- But, their interaction has a - coefficient
- Interpretation?:
 - “With elaborative rehearsal, associative strength matters less”
 - “If pair has high associative strength, it matters less how you study it” (another way of saying the same thing)
Interactions

• We now understand the sign of the interaction
• What about the specific numeric estimate?
 • What does \(-0.48515\) mean in this context?

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{AssocStrength1:Strategy1} & -0.48515 & 0.14880 & -3.261 & 0.001112 \text{ **} \\
\hline
\end{array}
\]

• Descriptive stats: Log odds in each condition
 • Not something you have to do when running your own model—this is just to understand where the numbers come from
• Low associative strength pair:
 • Elaborative rehearsal -> Increase of \(\approx 0.97\) logits
• High associative strength pair:
 • Elaborative rehearsal -> Increase of \(\approx 0.49\) logits
Interactions

- Low associative strength pair:
 - Elaborative rehearsal -> Increase of 0.97 logits
- High associative strength pair:
 - Elaborative rehearsal -> Increase of 0.49 logits
- We can compute a difference in log odds:
 \[0.49 - 0.97 = -0.48 \]

- Or an odds ratio in terms of the odds:
 \[\frac{\exp(0.49)}{\exp(0.97)} = \exp(-0.48) = 0.62 \]
Interactions

- Low associative strength pair:
 - Elaborative rehearsal -> Increase of 0.97 logits
- High associative strength pair:
 - Elaborative rehearsal -> Increase of 0.49 logits
- An odds ratio in terms of the odds:
 \[
 \frac{\exp(0.49)}{\exp(0.97)} = \exp(-0.48) = 0.62
 \]
- “The ratio between the odds of recalling pairs with elaborative versus maintenance rehearsal was 0.62 times smaller for high associative strength items.”
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Coding the Dependent Variable

- So far, positive numbers in the results meant better recall

- That's because we treat correct recall as a 1 ("hit") and an error as a 0 ("miss")
- We're looking at things that predict recall

```
> contrasts(cuedrecall$Recalled)

   Remembered
Forgotten     0
Remembered    1
```
Coding the Dependent Variable

I don’t trust these results. What if we’d coded it the other way, with “forgotten” as 1 and “remembered” as 0? Things might be totally different!

• This is also a totally plausible coding scheme
 • Variable that tracks whether you forgot something!

• Let’s see if Evil Scott is right:
 • Step 1: Create a new variable that codes things the way Evil Scott wants

• Step 2: Re-run the model
 • Step 3: ???
 • Step 4: PROFIT!
Coding the Dependent Variable

I don’t trust these results. What if we’d coded it the other way, with “forgotten” as 1 and “remembered” as 0? Things might be totally different!

• This is also a totally plausible coding scheme
 • Variable that tracks whether you forgot something!
• Let’s see if Evil Scott is right:
 • Step 1: Create a new variable that codes things the way Evil Scott wants
 • `cuedrecall$Forgotten <- ifelse(cuedrecall $Recalled == 'Forgotten', 1, 0)`
 • Step 2: Re-run the model
 • Step 3: ???
 • Step 4: PROFIT!
Coding the Dependent Variable

Let’s try running our model with the new coding:

- All we’ve done is flip the signs
 - Anything that increases remembering decreases forgetting (and vice versa)
 - Remember how logits equally distant from even odds have the same absolute value?
 - Won’t affect pattern of significance
- Conclusion: What we code as 1 vs 0 doesn’t affect our conclusions (good!!)
 - Choose the coding that makes sense for your research question. Do you want to talk about “what predicts graduation” or “what predicts dropping out”?
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
- Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Other Distributions

- `glmer()` supports other non-normal distributions

- `family=poisson`
 - For count data
 - Examples:
 - Number of solutions you brainstormed for a problem
 - Number of gestures in a storytelling task
 - Number of doctor’s visits
 - Counts range from 0 to positive infinity
 - Link is \(\log(\text{count}) \)
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Effect Size

• With `sleep.csv`, let’s run a model predicting `HoursSleep` from fixed effects of `HoursExercise` and `MgCaffeine`, and a random intercept of `Subject`.

• Which fixed effects significantly influence the number of hours of sleep that people get?
Effect Size

• With sleep.csv, let’s run a model predicting HoursSleep from fixed effects of HoursExercise and MgCaffeine, and a random intercept of Subject
• Which fixed effects significantly influence the number of hours of sleep that people get?
• SleepModel <- lmer(HoursSleep ~ 1 + HoursExercise + MgCaffeine + (1|Subject), data=sleep)
• We’re back to lmer because this is a continuous DV

<table>
<thead>
<tr>
<th>Fixed effects</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>6.794429</td>
<td>0.251521</td>
<td>27.014</td>
</tr>
<tr>
<td>HoursExercise</td>
<td>0.720977</td>
<td>0.072495</td>
<td>9.945</td>
</tr>
<tr>
<td>MgCaffeine</td>
<td>-0.004190</td>
<td>0.001204</td>
<td>-3.475</td>
</tr>
</tbody>
</table>

They both do!
Effect Size

• *t* statistics and *p*-values tell us about **whether** there’s an effect in the population

• A separate question is **how big** the effect is
 • **Effect size**
Is bacon really this bad for you??

October 26, 2015
• Is bacon really this bad for you??
• **True** that we have as much evidence that bacon causes cancer as smoking causes cancer!
• Same level of *statistical reliability*

MEAT AND CANCER

HOW STRONG IS THE EVIDENCE?

IARC CARCINOGENIC CLASSIFICATION GROUPS

- **GROUP 1**: Causes cancer
- **GROUP 2A**: Probably causes cancer
- **GROUP 2B**: Possibly causes cancer
- **GROUP 3**: Not classifiable as a cause of cancer
- **GROUP 4**: Probably not a cause of cancer

INCLUDES
- Salami
- Bacon
- Sausages and hot dogs
- Pork
- Beef
- Lamb

(Does not include chicken or fish)

These categories represent how likely something is to cause cancer in humans, not how many cancers it causes.
Is bacon really this bad for you??

True that we have as much evidence that bacon causes cancer as smoking causes cancer!

Same level of statistical reliability

But, effect size is much smaller for bacon
Effect Size: Parameter Estimate

- Simplest measure: Parameter estimates
 - Effect of 1-unit change in predictor on outcome variable
 - “Each hour of exercise the day before resulted in another 0.72 hours of sleep”
 - “On average, RT decreased by 18 ms for each additional trial of experience”
 - “Personalized math problems increased odds of passing exam by 1.2 times.”
- Concrete! Good for “real-world” outcomes
Effect Size: Standardization

- Which is the bigger effect?
 - 1 hour of exercise = 0.72 hours of sleep
 - 1 mg of caffeine = -0.004 hours of sleep
- Problem: These are measured in different units
 - Hours of exercise vs. mg of caffeine
Effect Size: Standardization

- Which is the bigger effect?
 - 1 hour of exercise = 0.72 hours of sleep
 - 1 mg of caffeine = -0.004 hours of sleep
- Problem: These are measured in different units
 - Hours of exercise vs. mg of caffeine
- Convert to z-scores: # of standard deviations from the mean
 - This scale applies to anything!
 - Standardized scores
Effect Size: Standardization

- `scale()` puts things in terms of z-scores
- New z-scored version of `HoursExercise`:
 - `sleep$HoursExercise.z <- scale(sleep$HoursExercise)[,1]`
 - # of standard deviations above/below mean hours of exercise

```
# Example
hours_exercise <- c(0.0000, 0.0000, 0.0000, 0.8959, 2.0000, 3.0000)
hours_exercise_z <- scale(hours_exercise)[,1]
```

- Then use these in a new model
Effect Size: Standardization

- `scale()` puts things in terms of z-scores
- New z-scored version of `HoursExercise`:
 - `sleep$HoursExercise.z <- scale(sleep$HoursExercise)[,1]`
 - # of standard deviations above/below mean hours of exercise)
- Then use these in a new model

- Try z-scoring `MgCaffeine`, too
- Then, run a model with the z-scored variables. Which has the largest effect?
Effect Size: Standardization

- `scale()` puts things in terms of z-scores
- New z-scored version of `HoursExercise`:
 - `sleep$HoursExercise.z <- scale(sleep$HoursExercise)[,1]`
 - # of standard deviations above/below mean hours of exercise)
- Then use these in a new model

```
Fixed effects:  Estimate Std. Error t value
(Intercept)     7.07789   0.21879  32.35
HoursExercise.z 0.75116   0.07553   9.95
MgCaffeine.z    -0.26337   0.07579  -3.47
```

1 SD increase in exercise => 0.75 hours of sleep
1 SD increase in caffeine => -0.26 hours of sleep

Exercise effect is bigger
Interpreting Effect Size

- Consider in context of other effect sizes in this domain:
 - Our effect: .20
 - Other effect 1: .30
 - Other effect 2: .40

- vs:
 - Other effect 1: .10
 - Other effect 2: .15
 - Our effect: .20

- For interventions: Consider cost, difficulty of implementation, etc.
- Basic science: …predictions of competing theories
Overall Variance Explained

• How well can we explain this DV?
 • Test: Do predicted values match up well with the actual outcomes?
 • R^2: \[\text{cor(fitted(SleepModel), sleep$HoursSleep)^2} \]
 • But, this includes what’s predicted on basis of subjects (and other random effects)
 • Compare to the R^2 of a model with just the random effects & no fixed effects
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Type I Error

- Does “brain training” affect general cognition?
 - H_0: There is no effect of brain training on cognition
 - $\gamma_1 = 0$ in the population
 - H_A: There is an effect of brain training on cognition
 - $\gamma_1 \neq 0$ in the population
Type I Error

• Does “brain training” affect general cognition?
 • H_0: There is no effect of brain training on cognition
 • $Y_1 = 0$ in the population
 • H_A: There is an effect of brain training on cognition
 • $Y_1 \neq 0$ in the population

| Estimate | Std. Error | z value | Pr(>|z|) |
|-----------|------------|---------|----------|
| 0.50485 | 0.04939 | 10.221 | < 2e-16 *** |
| 0.32199 | 0.09649 | 3.337 | 0.000847 *** |
| 0.72851 | 0.07735 | 9.418 | < 2e-16 *** |
| -0.48515 | 0.14880 | -3.261 | 0.001112 ** |
Type I Error

- Is a z score of 3.3 good evidence against H_0?
- In a world where brain training has no effect on cognition (H_0), the most probable z score would have been 0

13 Movie Trailers That Actually Use the Phrase ‘In a World...’

Matt Singer | February 19, 2015 @ 9:19 AM
Type I Error

• Is a z score of 3.3 good evidence against H_0?
• In a world where brain training has no effect on cognition (H_0), the most probable z score would have been 0

$z = 0$
Type I Error

- But even under H_0, we wouldn’t always expect to get exactly a z-score of 0 in our sample.
- Observed effect will sometimes be higher or lower just by chance (but these values have lower probability) – sampling error.
Type I Error

- In a world where H_0 is true, the distribution of z-scores should look like this.
 - The normal distribution of z-scores has mean 0 and std. dev. 1—the standard normal.
- How plausible is it that the z-score for our sample came from this distribution?
Type I Error

• p-value: Probability of obtaining a result this extreme under the null hypothesis of no effect
• We reject H_0 when the observed t or z has $< .05$ probability of arising under H_0
• But, still possible to get this z when H_0 is true
Type I Error

- p-value: Probability of obtaining a result this extreme under the null hypothesis of no effect.
- We reject H_0 when the observed t or z has < .05 probability of arising under H_0.
- But, still possible to get this z when H_0 is true.

A Consensus on the Brain Training Industry from the Scientific Community

To date, there is little evidence that playing brain games improves underlying broad cognitive abilities, or that it enables one to better navigate a complex realm of everyday life. Some intriguing
Type I Error

• p-value: Probability of obtaining a result this extreme under the null hypothesis of no effect
• We reject H_0 when the observed t or z has < .05 probability of arising under H_0
• But, still possible to get this z when H_0 is true
 • In that case, we’d incorrectly conclude that brain training works when it actually doesn’t
• False positive or Type I error
Type I Error

• What is our rate of Type I error?
 • Even in a world where H_0 is true, 5% of z values fall in white area
 • Thus, a 5% probability
 • $\alpha = \text{rate of Type I error} = .05$
Type I Error and Type II Error

- So, in a world where H_0 is true, two outcomes possible

<table>
<thead>
<tr>
<th>ACTUAL STATE OF THE WORLD</th>
<th>WHAT WE DID</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>Retain H_0 GOOD! Probability: 1-α</td>
</tr>
<tr>
<td>H_A is true</td>
<td>Reject H_0 OOPS! Type I error Probability: α</td>
</tr>
</tbody>
</table>
Type I Error and Type II Error

• What about a world where H_A is true?
Type I Error and Type II Error

- Another mistake we could make: There really is an effect, but we retained H_0
 - **False negative / Type II error**
 - Traditionally, not considered as “bad” as Type I
 - Probability: β

What We Did

<table>
<thead>
<tr>
<th>ACTUAL STATE OF THE WORLD</th>
<th>WHAT WE DID</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>Retain H_0</td>
</tr>
<tr>
<td></td>
<td>Reject H_0</td>
</tr>
<tr>
<td>H_A is true</td>
<td></td>
</tr>
</tbody>
</table>
Type I Error and Type II Error

- **POWER (1-\(\beta\))**: Probability of correct rejection of \(H_0\): detecting the effect when it really exists
- If our hypothesis (\(H_A\)) is right, what probability is there of obtaining significant evidence for it?
- Can we find the thing we’re looking for?

WHAT WE DID

<table>
<thead>
<tr>
<th>ACTUAL STATE OF THE WORLD</th>
<th>WHAT WE DID</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0) is true</td>
<td>Retain (H_0)</td>
</tr>
<tr>
<td></td>
<td>Reject (H_0)</td>
</tr>
<tr>
<td>(H_A) is true</td>
<td>OOPS! Type II error Probability: (\beta)</td>
</tr>
</tbody>
</table>
Never confuse Type I and II errors again:

Just remember that the Boy Who Cried Wolf caused both Type I & II errors, in that order.

First everyone believed there was a wolf, when there wasn't. Next they believed there was no wolf, when there was.

Substitute "effect" for "wolf" and you're done.

Kudos to @danolner for the thought. Illustration by Francis Barlow "De pastoris puero et agricolis" (1687). Public Domain. Via wikimedia.org
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Why Do We Care About Power?

1. **Grant agencies** now want to see it
 - Don’t want to fund a study with low probability of showing anything
 - e.g., Our theory *predicts* greater activity in Broca’s area in condition A than condition B. But our experiment has only a 16% probability of *detecting* that difference. Not good!
Why Do We Care About Power?

1. **Grant agencies** now want to see it
 - Don’t want to fund a study with low probability of showing anything

2. **Efficiency**: Don’t spend resources on studies with low power to find anything interesting
 - Societal resources: Money, participant hours
 - **Your** resources: Time!!

3. Interpreting **null effects**
 - Null effect of WM training on intelligence, 20% power
 - Maybe effect exists & we just didn’t detect it
 - Null effect of WM training on intelligence, 80% power
 - Informative!!
Week 9: Effect Size & Power

- Distributed Practice
- Finish \texttt{glmer()}
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Data Simulations

• If we say “α = .05”…
 • Significant differences should be false positives 5% of the time
 • BAD if test yields more false positives than claimed

• Is this true for a given test?
 • i.e., what proportion of our significant differences are false positives?
 • Achieved nominal false positive rate if the rate is indeed what we said our α is

• Problem: We usually don’t know which differences truly exist in the population
 • That’s what we’re doing the study to find out!
Determining Power

- Power for ANOVAs can be easily found from tables
 - Simpler design. Only 1 random effect (at most)
- More complicated for mixed effect models
Data Simulations

• Solution: Simulate data where we know what the results should be

Set parameters
Mean = 723 ms
Group difference = ZERO
SD = 100 ms

Create (“simulate”) random data within these parameters

Run the test, and see if we get the correct results

A way of evaluating statistical procedures
• When there is no actual group difference, how often do we get false positives (Type I errors)?
• When there is an actual group difference, what is our power to detect it?
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
- Power of Mixed Effect Models
- Doing Your Own Power Analysis
Mixed Effect Model Simulations: Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Design / Random Effects</th>
<th>Comparison Method</th>
<th>Control of Type I Error</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barr et al. (2013) maximal model</td>
<td>2 crossed (between or within items)</td>
<td>ANOVA</td>
<td>=</td>
<td>+</td>
</tr>
<tr>
<td>Barr et al. (2013) intercepts only</td>
<td>2 crossed (between or within items)</td>
<td>ANOVA</td>
<td>-</td>
<td>n.a.</td>
</tr>
<tr>
<td>Quene & van den Bergh (2004)</td>
<td>1 (within items)</td>
<td>1 RM-ANOVA</td>
<td>n.a.</td>
<td>+</td>
</tr>
<tr>
<td>Quene & van den Bergh (2004)</td>
<td>2 (within items)</td>
<td>2 RM-ANOVAs</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Baayen, Davidson, & Bates (2008) - 1</td>
<td>2 crossed (between items)</td>
<td>2 RM-ANOVAs</td>
<td>=/-</td>
<td>+</td>
</tr>
</tbody>
</table>

- + indicates better performance
- - indicates worse performance
- n.a. indicates not applicable

Additional notes:
- “especially with missing data”
- N=40
- N=20
Mixed Effect Model Simulations: Results

<table>
<thead>
<tr>
<th>Design / Random Effects</th>
<th>Comparison Method</th>
<th>Control of Type I Error</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barr et al. (2013)</td>
<td>2 CROSSED (BETWEEN OR WITHIN ITEMS)</td>
<td>ANOVA</td>
<td>=</td>
</tr>
<tr>
<td>maximal model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barr et al. (2013)</td>
<td>2 CROSSED (BETWEEN OR WITHIN ITEMS)</td>
<td>ANOVA</td>
<td>-</td>
</tr>
<tr>
<td>intercepts only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quene & van den Bergh (2004)</td>
<td>1 (WITHIN ITEMS)</td>
<td>1 RM-ANOVA</td>
<td>n.a.</td>
</tr>
<tr>
<td>1 RM-ANOVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quene & van den Bergh (2004)</td>
<td>2 (WITHIN ITEMS)</td>
<td>2 RM-ANOVAs</td>
<td>=</td>
</tr>
<tr>
<td>2 RM-ANOVAs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baayen, Davidson, & Bates (2008) - 1</td>
<td>2 CROSSED (BETWEEN ITEMS)</td>
<td>2 RM-ANOVAs</td>
<td>=/-</td>
</tr>
<tr>
<td>Baayen, Davidson, & Bates (2008) - 2</td>
<td>2 CROSSED (WITHIN ITEMS)</td>
<td>1 RM-ANOVA</td>
<td>=</td>
</tr>
<tr>
<td>Baayen, Davidson, & Bates (2008) - 3</td>
<td>2 CROSSED (BETWEEN ITEMS)</td>
<td>REGRESSION</td>
<td>+</td>
</tr>
</tbody>
</table>
Data Simulations: Conclusions

• Type I error rates roughly equal
 • Assuming you do mixed effects models correctly

• Mixed effects models are more powerful
 • By-subjects ANOVA doesn’t remove noise from item variability
 • By-items ANOVA doesn’t remove noise from subject variability
 • Mixed effects models account for both random effects—data less noisy
Week 9: Effect Size & Power

- Distributed Practice
- Finish \texttt{glmer()}
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis
Your Own Power Analysis

- Rationale behind power analyses:
 - Can we detect the kind & size of effect we’re interested in?
 - What sample size would we need?

- In practice:
 - We can’t control effect size; it’s a property of nature
 - α is usually fixed (e.g., at .05) by convention
 - But, we can control our sample size n!

- So:
 - Determine desired power (often .80)
 - Estimate the effect size(s)
 - Calculate the necessary sample size n
Your Own Power Analysis

• Rationale behind power analyses:
 • Can we detect the kind & size of effect we’re interested in?
 • What sample size would we need?

• Two ways to do this:
 • Use tables/software for ANOVA (e.g. G*Power)
 • Mixed effect models, if anything, will have at least this much power or more
 • Apply the simulation procedure to your design
 • Your fixed effect sizes
 • Your random effects structure & variance
Estimating Effect Size

• One reason we haven’t always calculated power is it requires the effect size
• But, several ways to estimate effect size:
 1. Prior literature
 • What is the effect size in other studies in this domain or with a similar manipulation?
Estimating Effect Size

• One reason we haven’t always calculated power is it requires the effect size
• But, several ways to estimate effect size:
 1. Prior literature
 2. Pilot study
 • Run a version of the study with a smaller \(n \)
 • Don’t worry about whether effect is significant, just use data to estimate \(\omega^2 \)
Estimating Effect Size

- One reason we haven’t always calculated power is it requires the effect size.
- But, several ways to estimate effect size:
 1. Prior literature
 2. Pilot study
 3. Smallest interesting effect
 - Decide smallest effect size we’d care about
 - e.g., we want our educational intervention to have an effect size of at least .05 GPA
 - Calculate power based on that effect size
 - True that if actual effect is smaller than .05 GPA, our power would be lower, but the idea is we no longer care about the intervention if its effect is that small
Data Simulations

- Simulate data using your fixed effect sizes & random effects variances

Set parameters
- Mean = 723 ms
- Group difference = ZERO
- SD = 100 ms

Create ("simulate") random data within these parameters

Run the test, and see if we get the correct results

Repeat with more datasets so we have a set of outcomes

- What sample size(s) do you need in order to detect the effect 80% of the time?
 - Will 40 subjects in each of 5 schools suffice?
 - What about 40 subjects in 10 schools?
Week 9: Effect Size & Power

- Distributed Practice
- Finish `glmer()`
 - Interactions
 - Coding the Dependent Variable
 - Other Distributions
- Effect Size
- Power
 - Type I and Type II Error
 - Why Should We Care?
 - Assessing Power
 - Power of Mixed Effect Models
 - Doing Your Own Power Analysis